В последние годы наблюдается значительный рост производства и развитие инфраструктуры городов. В связи с этим увеличивается число и мощности электроприемников, использующихся на производствах в основных технологических и вспомогательных циклах, а объекты инфраструктуры применяют все большее количество осветительных аппаратов для рабочего освещения, рекламы и дизайна. Соответственно увеличивается потребляемая электрическая мощность.
Реактивный ток дополнительно нагружает линии электропередачи, что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети. Реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии, а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.
Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок). Использование конденсаторных установок позволяет:
• разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
• снизить расходы на оплату электроэнергии;
• при использовании определенного типа установок снизить уровень высших гармоник;
• подавить сетевые помехи, снизить несимметрию фаз;
• сделать распределительные сети более надежными и экономичными
На практике коэффициент мощности после компенсации находится в пределах от0,93 до0,99.
Преимущества использования конденсаторных установок для компенсации реактивной мощности
• малые удельные потери активной мощности(собственные потери современных низковольтных косинусных конденсаторов не превышают0,5 Вт на1000 ВАр);
• отсутствие вращающихся частей;
• простой монтаж и эксплуатация(не нужно фундамента);
• относительно невысокие капиталовложения;
• возможность подбора любой необходимой мощности компенсации;
• возможность установки и подключения в любой точке электросети;
• отсутствие шума во время работы;
Виды компенсации
Единичная компенсация предпочтительна там, где:
— требуется компенсация мощных(свыше20 кВт) потребителей;
— потребляемая мощность постоянна в течение длительного времени.
Групповая компенсация применяется для случая компенсации нескольких расположенных рядом и включаемых одновременно индуктивных нагрузок, подключенных к одному распределительному устройству и компенсируемых одной конденсаторной батареей
Централизованная компенсация
Для предприятий с изменяющейся потребностью в реактивной мощности постоянно включенные батареи конденсаторов не приемлемы, т. к. при этом может возникнуть режим недокомпенсации или перекомпенсации. В этом случае конденсаторная установка оснащается специализированным контроллером и коммутационно-защитной аппаратурой. При отклонении значения сosj от заданного значения контроллер подключает или отключает ступени конденсаторов. Преимущество централизованной компенсации заключается в следующем: включенная мощность конденсаторов соответствует потребляемой в конкретный момент времени реактивной мощности без перекомпенсации или недокомпенсации.
При выборе конденсаторной установки требуемая мощность конденсаторов может определяться как
Qc = P • (tgj1 – tgj2),
где
tgj1 – коэффициент мощности потребителя до установки компенсирующих устройств;
tgj2 – коэффициент мощности после установки компенсирующих устройств(желаемый или задаваемый энергосистемой коэффициент).
Конденсаторные установки компенсации реактивной мощности
Преимущества установок обуславливаются возможностями использования:
— самовосстанавливающихся косинусных конденсаторов, что обеспечивает их надежность, долговечность и низкую стоимость при профилактических и ремонтных работах;
— специальных контакторов опережающего включения, увеличивающих срок службы контакторов;
— специальных контроллеров нескольких типов, обеспечивающих автоматическое регулированиеcos φ в том числе с возможностью передачи данных наPC и возможностью контроля в сети высших гармоник тока и напряжения;
— индикации при неисправностях;
— фильтра высших гармонических;